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In information design, when both the sender and the risk-neutral receiver only care about the
mean of the posterior distribution induced by a signal, the sender’s feasible space of informa-
tion strategies can be precisely characterized by the notion of mean-preserving contraction
(henceforth MPC). While this point is well-known in the literature, it is rarely discussed in
detail. Beginners may wonder about these two questions:

1. What is the connection between the notion of mean-preserving contraction and the
notion of second-order stochastic dominance?

2. Why does the notion of mean-preserving contraction fully characterize the sender’s
feasible strategy space when the sender and the risk-neutral receiver only care about
the posterior mean?

This note is written to answer these two questions.

1 Answer to the first question

Introduction to Mean-preserving Contraction. The notion of MPC provides a partial

ordering of random variables based on their cumulative density functions (CDFs).

Definition 1 (MPC). Distribution G € A([0,1]) is an MPC of distribution F € A([0,1]) if
(i) [, G(z) dw < [y F(x) dv, Vt€[0,1]; and

(ii) fo ) do = fo ) dz.

The opposite definition of MPC is mean-preserving spread (henceforth, MPS). If distribution
G is an MPC of distribution F, then distribution F' is an MPS of distribution G, and vice
versa. In information design, the distribution of posterior means forms an MPC of the prior
when the sender and the risk-neutral receiver only care about the posterior mean.

Intuitively, constructing an MPC based on one distribution is essentially a process of making
the distribution more concentrated around its mean while keeping the mean unchanged,
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thereby reducing uncertainty and dispersion of the distribution.

From the perspective of probability density, an MPC of some prior F' is generated from the
prior F' through a series of mean-preserving contractions — each a process that moves the
probability density from both sides to the middle while keeping the mean unchanged.

Introduction to Stochastic Dominance. In decision theory and economics, stochastic
dominance is a fundamental concept used to compare the risk-return profiles of uncertain
outcomes. Similar to MPC, it also provides a partial ordering of random variables based on
their CDF's. In this note, we only care about the first-order stochastic dominance (henceforth
FOSD) and the second-order stochastic dominance (henceforth SOSD).

Here is the original definition of FOSD, which is from the perspective of risk-return profile.
We call the definition below as the wtility condition of FOSD.

Definition 2 (FOSD). Distribution G € A([0,1]) is FOSD to distribution F € A([0,1]),
that is G =1 F, if for all (weakly) increasing function u : [0,1] — R, it holds

E.clu(z)] :/0 u(z) dG(x) > /0 u(z) dF (z) = Epoplu(z)] .

Below Lemma 1 means that the wtility condition and the CDF condition of FOSD are
equivalent. In other words, there are two kinds of equivalent definitions of FOSD: the utility
condition and the CDF condition.

Lemma 1. fol u(z) ) > fo x) dF(x) holds for all (weakly) increasing function u :
0,1]] R & F(z) < ()forallxe[o,l]

Proof of Lemma 1. First, we prove that F'(z) < G(x) for all z € [0,1] = fo z) dG(x) >
fol u(z) dF(x) holds for all (weakly) increasing function u : [0,1] — R. Since F( ) < G(x)

for all z € [0, 1], we have fOI(G(x) — F(z)) du(z) > 0 for all (weakly) increasing function w.
Through integration by parts, we achieve the target result.

Second, we prove that [\ u(z) dG(z) > [ uf ) holds for all (weakly) increasing
function u : [0,1] - R = F(z) < G(x) for all T € [O 1]. We prove it by contradiction.
Suppose that there exists zo € (0,1) such that F(zg) > G(xg). We construct a weakly
increasing function u : [0,1] — R as follows

1, ifz<uz,
u(z) = .
0, otherwise .

By the fact that fol u(z) dG(x) > fol u(x) dF (z), we have

/01 u(z) dG(x) — /01 u(z) dF (z) = /Oxo u(x) dG(x) — /Oxo u(x) dF(x) = G(xo) — F(z0) >0,

which forms a contradiction with the assumption.

Combining these two directions above, we have finished the proof. O

Function u satisfies that u/(z) > 0 for all z € [0, 1].
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Here is the original definition of SOSD, which is from the perspective of risk-return profile.
We call the definition below as the wtility condition of SOSD.

Definition 3 (SOSD). Distribution G € A([0,1]) is SOSD to distribution F € A([0,1]),
that is G =5 F, if for all (weakly) increasing and concave function u : [0,1] — R,? it holds

E.clu(z)] :/0 u(z) dG(x) > /0 u(z) dF(z) = Epoplu(z)] .

Below Lemma 2 means that the utility condition and the CDF condition of SOSD are equiv-
alent. In other words, there are two kinds of equivalent definitions of SOSD: the wutility
condition and the CDF condition.

Lemma 2. fol u(z) dG(x) > fo holds for all (weakly) increasing and concave
function u : [0,1] — R & [1G(x) da < fo ) dx for all t € [0,1].

Proof of Lemma 2. Flrst we prove that fo ) de < fo ) dz for all t € [0,1] =

fo u(z) dG(z) > fo () holds for all (Weakly) increasing and concave function
u [0, 1] — R. Through integration by parts, we have

/O ule) dG(a) — /0 @) dF(x)

By the fact that f(f G(z) dz < fo ) dz for all ¢ € [0, 1], we have that fo x) dG(x) —
fol u(z) dF(z) > 0.

Second, we prove that fol ) > fo holds for all (weakly) increasing and

concave function w : [0,1] — R = fo da: < fo ) dz for all ¢ € [0,1]. For any fixed
€ [0,1], we can construct the function ut(x) = mln(x t). Replacing the function u with

2Function u satisfies that «/(z) > 0 and «”(z) > 0 for all z € [0, 1].



the function u; and using integration by parts, we have

/0 1 w(z) dG(z) > /0 1 w(z) dF(2)

/Otx dG(x)th/t1 dG () Z/Otm dF(:p)+t/01 dF(z) |
/Ot:c dG(x) +t(1 - G(t)) > /t:c dF(z) + t(1 — F(t)) ,

0

(tG(t) _ /0 tG(a:)d:c) (1 —G(1) > <tF(t) _ /0 tF(m)dm) (1= F(1)

/Ot(;(x) dxg/OtF(a:) da .

Combining these two directions above, we have finished the proof. n

The Relationship between MPC and SOSD. We observe that the definitions of MPC
and SOSD, though seemingly similar, are not equivalent. Indeed, MPC is a stronger version
of SOSD since the former also requires two distributions to share a common mean. Given a
distribution F', an MPS of distribution F' is also SOSD to distribution F', while the converse
does not hold. Given that distribution G is SOSD to distribution F', if these two distributions
further share a common mean, then distribution G also forms an MPC of distribution F'.
The relationship can be exactly summarized in the following lemma.

Lemma 3. Given two distributions over [0, 1], F and G, G € MPC(F) if and only if G =9 F
and B, plz] = Epolz].

2 Answer to the second question

Given the sender’s prior F', we use MPC(F') to represent the space of all mean-preserving con-
tractions induced from the prior F. According to Rothschild and Stiglitz (1970); Blackwell
and Girshick (1979); Gentzkow and Kamenica (2016), we have the following lemma.

Theorem 4. There exists an information structure that induces the distribution G over
posterior means from prior distribution F' if and only if G € MPC(F).

To prove this theorem, we have to introduce the intermediary notion below.

Definition 4 (Martingale Coupling). Given two distributions over [0,1], F' and G, a two-
dimensional distribution H over [0, 1] x [0,1] is a Martingale Coupling (Sub-Martingale Cou-
pling) for F' and G, if it holds: (i) F' and G are both H’s marginal distributions; and (ii)
Eott,,[2] =y (Bon,,[2] < y) for each y € [0,1].°

Lemma 5 (Strassen’s Theorem) brings an equivalent condition to the existence of a Sub-

Martingale Coupling for two distributions, that is, for any Sub-Martingale coupling H €
A([0,1] x [0,1]), the relationship between its two marginals is SOSD.

3Here H,, denotes the conditional distribution of = given y under joint distribution H.

ly
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Lemma 5 (Strassen’s Theorem). Given two distributions over [0,1], F and G, G >3 F if
and only if there exists a Sub-Martingale Coupling H € A([0,1] x [0,1]) for F' and G.

Proof of Lemma 5. The existence of a Sub-Martingale coupling H for distributions F' and G
is equivalent to the fact that there is a feasible solution to the following infinite-dimensional
linear system (we omit the objective of the linear system since it is useless). We use f and
g to denote the probability density functions (PDFs) of F' and G.

subject to —/0 dH (z,y) = —f(x), Vr € [0,1]
/0 dH (z,y) = g(y), vy € [0,1]
/0 (z —y) dH(z,y) <0, Yy € [0,1]

By introducing dual variables for these constraints and then applying Farkas’ lemma,* the
above fact is further equivalent to the fact that there exists no such pair of dual variables
(A, 1, 7y) that is a solution to the following linear system.

1(y) +v(y)(x —y), V(x,y) € [0,1)? (1)
0, Yy € [0, 1] 2)

subject to  A(z) <
() 2

/O n(y)g(y) dy —/O M) f(z) dz <0 (3)

There exists a feasible solution to the linear system above if and only if there exist functions
uw and s such that

(y) + s(y)(z —y), V(z,y) € (0,1 (4)

u(z) < u
>0, Vy € [0, 1] (5)

5(v)
/0 u(y)gly) dy - / w() f(z) dz < 0 (6)

Here is the proof: First, we prove the sufficiency («<=). Let A\(x) = u(z) for each = € [0, 1],
wu(y) = u(y) for each y € [0, 1], and y(y) = s(y) for each y € [0, 1], then the sufficiency directly
holds. Second, we prove the necessity (=). Let u(x) = minyepo11{u(y) +s(y)(x —y)} for each

€ [0,1]. Function u is increasing and concave, so let function s denote the supergradient
of function u, then Conditions (4) and (5) hold. By the fact A(z) < u(x) for each = € [0, 1]
and u(y) < u(y) for each y € [0, 1], Condition (6) holds.

With this intermediate result, now we can finish our proof. Conditions (4) and (5) imply
that, function w is an increasing concave function. Condition (6) states that E,.q[u(z)] <

4Farkas’ lemma states that exactly one of the following systems has a solution: (i) Az = b with = > 0;
and (ii) ATy > 0 with bTy < 0, where A € R™*", b € R™, x € R”, and y € R™.



E.~r[u(x)]. Thus there is no feasible solution to the dual linear system is equivalent to the
fact that, for all increasing concave function u, E,.q[u(z)] > E;wp[u(z)], which is exactly
the definition of distribution G' being SOSD to distribution F'. n

With Lemma 5, it suffices to prove that, for two distributions F' and G, there exists an
information structure that induces distribution G over posterior mean from prior distribution
F, if and only if, E, r[z] = E,g[z] and there exists a Sub-Martingale Coupling for these
two distributions. Note that, if distributions F' and G share a common mean, then any
Sub-Martingale Coupling for these two distributions is also a Martingale Coupling.

Proof of Theorem /. First, we prove the proof of necessity (=-). Suppose that information
structure (7(-|-),S) induces the distribution of posterior mean G from the prior F. Based
on the Bayes Rule, we directly have that

E.wrlz] = Epglz] = EVNF[ESNW(A‘U) [E[z|s]]] -
We construct a two-dimensional distribution H as follows
H(z,y) £ F(z) x G(y), Y,y €[0,1] .

It is obvious that distributions F' and GG are two marginals of the two-dimensional distribution
H. Based on the fact that distribution G is the distribution over posterior mean from prior
F', we have that E,.p, [v] =y for each y € [0,1]. Thus, the two-dimensional distribution
H indeed forms a Martingale Coupling of distributions F' and G.

Second, we prove the proof of sufficiency (<). We can construct such an information struc-
ture: let S = [0,1] and 7(s = ylz) = H(ylr) = f%fj)j) for any = € [0,1] and y € [0,1].
Since the two-dimensional distribution H is a Martingale Coupling of distributions F' and
G, it is easy to check that the distribution of posterior means — induced from the prior F
and the constructed information structure after updating using Bayes Rule is exactly the

distribution G. O
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