

Mean-preserving Contraction and Stochastic Dominance: An Information Design Perspective

Zhicheng Du*

April 14, 2025

In information design, when both the sender and the risk-neutral receiver only care about the mean of the posterior distribution induced by a signal, the sender's feasible space of information strategies can be precisely characterized by the notion of mean-preserving contraction (henceforth MPC). While this point is well-known in the literature, it is rarely discussed in detail. Beginners may wonder about these two questions:

1. What is the connection between the notion of mean-preserving contraction and the notion of second-order stochastic dominance?
2. Why does the notion of mean-preserving contraction fully characterize the sender's feasible strategy space when the sender and the risk-neutral receiver only care about the posterior mean?

This note is written to answer these two questions.

1 Answer to the first question

Introduction to Mean-preserving Contraction. The notion of MPC provides a partial ordering of random variables based on their cumulative density functions (CDFs).

Definition 1 (MPC). *Distribution $G \in \Delta([0, 1])$ is an MPC of distribution $F \in \Delta([0, 1])$ if*

- (i) $\int_0^t G(x) dx \leq \int_0^t F(x) dx, \quad \forall t \in [0, 1];$ and
- (ii) $\int_0^1 G(x) dx = \int_0^1 F(x) dx.$

The opposite definition of MPC is mean-preserving spread (henceforth, MPS). If distribution G is an MPC of distribution F , then distribution F is an MPS of distribution G , and vice versa. In information design, the distribution of posterior means forms an MPC of the prior when the sender and the risk-neutral receiver only care about the posterior mean.

Intuitively, constructing an MPC based on one distribution is essentially a process of making the distribution more concentrated around its mean while keeping the mean unchanged,

*The author thank Zihe Wang for helpful comments and suggestions.

thereby reducing uncertainty and dispersion of the distribution.

From the perspective of probability density, an MPC of some prior F is generated from the prior F through a series of mean-preserving contractions – each a process that moves the probability density from both sides to the middle while keeping the mean unchanged.

Introduction to Stochastic Dominance. In decision theory and economics, stochastic dominance is a fundamental concept used to compare the risk-return profiles of uncertain outcomes. Similar to MPC, it also provides a partial ordering of random variables based on their CDFs. In this note, we only care about the first-order stochastic dominance (henceforth FOSD) and the second-order stochastic dominance (henceforth SOSD).

Here is the original definition of FOSD, which is from the perspective of risk-return profile. We call the definition below as the *utility condition* of FOSD.

Definition 2 (FOSD). *Distribution $G \in \Delta([0, 1])$ is FOSD to distribution $F \in \Delta([0, 1])$, that is $G \succ_1 F$, if for all (weakly) increasing function $u : [0, 1] \rightarrow \mathbb{R}$,¹ it holds*

$$\mathbb{E}_{x \sim G}[u(x)] = \int_0^1 u(x) dG(x) \geq \int_0^1 u(x) dF(x) = \mathbb{E}_{x \sim F}[u(x)] .$$

Below Lemma 1 means that the *utility condition* and the *CDF condition* of FOSD are equivalent. In other words, there are two kinds of equivalent definitions of FOSD: the *utility condition* and the *CDF condition*.

Lemma 1. $\int_0^1 u(x) dG(x) \geq \int_0^1 u(x) dF(x)$ holds for all (weakly) increasing function $u : [0, 1] \rightarrow \mathbb{R} \Leftrightarrow F(x) \leq G(x)$ for all $x \in [0, 1]$.

Proof of Lemma 1. First, we prove that $F(x) \leq G(x)$ for all $x \in [0, 1] \Rightarrow \int_0^1 u(x) dG(x) \geq \int_0^1 u(x) dF(x)$ holds for all (weakly) increasing function $u : [0, 1] \rightarrow \mathbb{R}$. Since $F(x) \leq G(x)$ for all $x \in [0, 1]$, we have $\int_0^1 (G(x) - F(x)) du(x) \geq 0$ for all (weakly) increasing function u . Through integration by parts, we achieve the target result.

Second, we prove that $\int_0^1 u(x) dG(x) \geq \int_0^1 u(x) dF(x)$ holds for all (weakly) increasing function $u : [0, 1] \rightarrow \mathbb{R} \Rightarrow F(x) \leq G(x)$ for all $x \in [0, 1]$. We prove it by contradiction. Suppose that there exists $x_0 \in (0, 1)$ such that $F(x_0) > G(x_0)$. We construct a weakly increasing function $u : [0, 1] \rightarrow \mathbb{R}$ as follows

$$u(x) = \begin{cases} 1, & \text{if } x \leq x_0 , \\ 0, & \text{otherwise .} \end{cases}$$

By the fact that $\int_0^1 u(x) dG(x) \geq \int_0^1 u(x) dF(x)$, we have

$$\int_0^1 u(x) dG(x) - \int_0^1 u(x) dF(x) = \int_0^{x_0} u(x) dG(x) - \int_0^{x_0} u(x) dF(x) = G(x_0) - F(x_0) \geq 0 ,$$

which forms a contradiction with the assumption.

Combining these two directions above, we have finished the proof. □

¹Function u satisfies that $u'(x) \geq 0$ for all $x \in [0, 1]$.

Here is the original definition of SOSD, which is from the perspective of risk-return profile. We call the definition below as the *utility condition* of SOSD.

Definition 3 (SOSD). *Distribution $G \in \Delta([0, 1])$ is SOSD to distribution $F \in \Delta([0, 1])$, that is $G \succ_2 F$, if for all (weakly) increasing and concave function $u : [0, 1] \rightarrow \mathbb{R}$ ² it holds*

$$\mathbb{E}_{x \sim G}[u(x)] = \int_0^1 u(x) \, dG(x) \geq \int_0^1 u(x) \, dF(x) = \mathbb{E}_{x \sim F}[u(x)] .$$

Below Lemma 2 means that the *utility condition* and the *CDF condition* of SOSD are equivalent. In other words, there are two kinds of equivalent definitions of SOSD: the *utility condition* and the *CDF condition*.

Lemma 2. $\int_0^1 u(x) \, dG(x) \geq \int_0^1 u(x) \, dF(x)$ holds for all (weakly) increasing and concave function $u : [0, 1] \rightarrow \mathbb{R} \Leftrightarrow \int_0^t G(x) \, dx \leq \int_0^t F(x) \, dx$ for all $t \in [0, 1]$.

Proof of Lemma 2. First, we prove that $\int_0^t G(x) \, dx \leq \int_0^t F(x) \, dx$ for all $t \in [0, 1] \Rightarrow \int_0^1 u(x) \, dG(x) \geq \int_0^1 u(x) \, dF(x)$ holds for all (weakly) increasing and concave function $u : [0, 1] \rightarrow \mathbb{R}$. Through integration by parts, we have

$$\begin{aligned} & \int_0^1 u(x) \, dG(x) - \int_0^1 u(x) \, dF(x) \\ &= \int_0^1 u'(x)[F(x) - G(x)] \, dx = \int_0^1 u'(x) \, d \int_0^x [F(t) - G(t)] \, dt \\ &= \left[u'(x) \int_0^x [F(t) - G(t)] \, dt \right]_0^1 - \int_0^1 u''(x) \left(\int_0^x [F(t) - G(t)] \, dt \right) \, dx \\ &= u'(1) \left[\int_0^1 F(t) \, dt - \int_0^1 G(t) \, dt \right] - \int_0^1 u''(x) \left(\int_0^x [F(t) - G(t)] \, dt \right) \, dx . \end{aligned}$$

By the fact that $\int_0^t G(x) \, dx \leq \int_0^t F(x) \, dx$ for all $t \in [0, 1]$, we have that $\int_0^1 u(x) \, dG(x) - \int_0^1 u(x) \, dF(x) \geq 0$.

Second, we prove that $\int_0^1 u(x) \, dG(x) \geq \int_0^1 u(x) \, dF(x)$ holds for all (weakly) increasing and concave function $u : [0, 1] \rightarrow \mathbb{R} \Rightarrow \int_0^t G(x) \, dx \leq \int_0^t F(x) \, dx$ for all $t \in [0, 1]$. For any fixed $t \in [0, 1]$, we can construct the function $u_t(x) = \min(x, t)$. Replacing the function u with

²Function u satisfies that $u'(x) \geq 0$ and $u''(x) \geq 0$ for all $x \in [0, 1]$.

the function u_t and using integration by parts, we have

$$\begin{aligned}
\int_0^1 u_t(x) \, dG(x) &\geq \int_0^1 u_t(x) \, dF(x) \\
\int_0^t x \, dG(x) + t \int_t^1 dG(x) &\geq \int_0^t x \, dF(x) + t \int_0^1 dF(x) , \\
\int_0^t x \, dG(x) + t(1 - G(t)) &\geq \int_0^t x \, dF(x) + t(1 - F(t)) , \\
\left(tG(t) - \int_0^t G(x) dx \right) + t(1 - G(t)) &\geq \left(tF(t) - \int_0^t F(x) dx \right) + t(1 - F(t)) , \\
\int_0^t G(x) \, dx &\leq \int_0^t F(x) \, dx .
\end{aligned}$$

Combining these two directions above, we have finished the proof. \square

The Relationship between MPC and SOSD. We observe that the definitions of MPC and SOSD, though seemingly similar, are not equivalent. Indeed, MPC is a stronger version of SOSD since the former also requires two distributions to share a common mean. Given a distribution F , an MPS of distribution F is also SOSD to distribution F , while the converse does not hold. Given that distribution G is SOSD to distribution F , if these two distributions further share a common mean, then distribution G also forms an MPC of distribution F . The relationship can be exactly summarized in the following lemma.

Lemma 3. *Given two distributions over $[0, 1]$, F and G , $G \in \text{MPC}(F)$ if and only if $G \succ_2 F$ and $\mathbb{E}_{x \sim F}[x] = \mathbb{E}_{x \sim G}[x]$.*

2 Answer to the second question

Given the sender's prior F , we use $\text{MPC}(F)$ to represent the space of all mean-preserving contractions induced from the prior F . According to [Rothschild and Stiglitz \(1970\)](#); [Blackwell and Girshick \(1979\)](#); [Gentzkow and Kamenica \(2016\)](#), we have the following lemma.

Theorem 4. *There exists an information structure that induces the distribution G over posterior means from prior distribution F if and only if $G \in \text{MPC}(F)$.*

To prove this theorem, we have to introduce the intermediary notion below.

Definition 4 (Martingale Coupling). *Given two distributions over $[0, 1]$, F and G , a two-dimensional distribution H over $[0, 1] \times [0, 1]$ is a Martingale Coupling (Sub-Martingale Coupling) for F and G , if it holds: (i) F and G are both H 's marginal distributions; and (ii) $\mathbb{E}_{x \sim H_{x|y}}[x] = y$ ($\mathbb{E}_{x \sim H_{x|y}}[x] \leq y$) for each $y \in [0, 1]$.³*

Lemma 5 (Strassen's Theorem) brings an equivalent condition to the existence of a Sub-Martingale Coupling for two distributions, that is, for any Sub-Martingale coupling $H \in \Delta([0, 1] \times [0, 1])$, the relationship between its two marginals is SOSD.

³Here $H_{x|y}$ denotes the conditional distribution of x given y under joint distribution H .

Lemma 5 (Strassen's Theorem). *Given two distributions over $[0, 1]$, F and G , $G \succ_2 F$ if and only if there exists a Sub-Martingale Coupling $H \in \Delta([0, 1] \times [0, 1])$ for F and G .*

Proof of Lemma 5. The existence of a Sub-Martingale coupling H for distributions F and G is equivalent to the fact that there is a feasible solution to the following infinite-dimensional linear system (we omit the objective of the linear system since it is useless). We use f and g to denote the probability density functions (PDFs) of F and G .

$$\begin{aligned} \text{subject to} \quad & - \int_0^1 dH(x, y) = -f(x), & \forall x \in [0, 1] \\ & \int_0^1 dH(x, y) = g(y), & \forall y \in [0, 1] \\ & \int_0^1 (x - y) dH(x, y) \leq 0, & \forall y \in [0, 1] \end{aligned}$$

By introducing dual variables for these constraints and then applying Farkas' lemma,⁴ the above fact is further equivalent to the fact that there exists no such pair of dual variables (λ, μ, γ) that is a solution to the following linear system.

$$\text{subject to} \quad \lambda(x) \leq \mu(y) + \gamma(y)(x - y), \quad \forall (x, y) \in [0, 1]^2 \quad (1)$$

$$\gamma(y) \geq 0, \quad \forall y \in [0, 1] \quad (2)$$

$$\int_0^1 \mu(y)g(y) dy - \int_0^1 \lambda(x)f(x) dx < 0 \quad (3)$$

There exists a feasible solution to the linear system above if and only if there exist functions u and s such that

$$u(x) \leq u(y) + s(y)(x - y), \quad \forall (x, y) \in [0, 1]^2 \quad (4)$$

$$s(y) \geq 0, \quad \forall y \in [0, 1] \quad (5)$$

$$\int_0^1 u(y)g(y) dy - \int_0^1 u(x)f(x) dx < 0 \quad (6)$$

Here is the proof: First, we prove the sufficiency (\Leftarrow). Let $\lambda(x) = u(x)$ for each $x \in [0, 1]$, $\mu(y) = u(y)$ for each $y \in [0, 1]$, and $\gamma(y) = s(y)$ for each $y \in [0, 1]$, then the sufficiency directly holds. Second, we prove the necessity (\Rightarrow). Let $u(x) = \min_{y \in [0, 1]} \{\mu(y) + s(y)(x - y)\}$ for each $x \in [0, 1]$. Function u is increasing and concave, so let function s denote the supergradient of function u , then Conditions (4) and (5) hold. By the fact $\lambda(x) \leq u(x)$ for each $x \in [0, 1]$ and $u(y) \leq \mu(y)$ for each $y \in [0, 1]$, Condition (6) holds.

With this intermediate result, now we can finish our proof. Conditions (4) and (5) imply that, function u is an increasing concave function. Condition (6) states that $E_{x \sim G}[u(x)] <$

⁴Farkas' lemma states that exactly one of the following systems has a solution: (i) $Ax = b$ with $x \geq 0$; and (ii) $A^\top y \geq 0$ with $b^\top y < 0$, where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $x \in \mathbb{R}^n$, and $y \in \mathbb{R}^m$.

$\mathbb{E}_{x \sim F}[u(x)]$. Thus there is no feasible solution to the dual linear system is equivalent to the fact that, for all increasing concave function u , $\mathbb{E}_{x \sim G}[u(x)] \geq \mathbb{E}_{x \sim F}[u(x)]$, which is exactly the definition of distribution G being SOSD to distribution F . \square

With Lemma 5, it suffices to prove that, for two distributions F and G , there exists an information structure that induces distribution G over posterior mean from prior distribution F , if and only if, $\mathbb{E}_{x \sim F}[x] = \mathbb{E}_{x \sim G}[x]$ and there exists a Sub-Martingale Coupling for these two distributions. Note that, if distributions F and G share a common mean, then any Sub-Martingale Coupling for these two distributions is also a Martingale Coupling.

Proof of Theorem 4. First, we prove the proof of necessity (\Rightarrow). Suppose that information structure $(\pi(\cdot|\cdot), S)$ induces the distribution of posterior mean G from the prior F . Based on the Bayes Rule, we directly have that

$$\mathbb{E}_{x \sim F}[x] = \mathbb{E}_{x \sim G}[x] = \mathbb{E}_{v \sim F}[\mathbb{E}_{s \sim \pi(\cdot|v)}[\mathbb{E}[x|s]]] .$$

We construct a two-dimensional distribution H as follows

$$H(x, y) \triangleq F(x) \times G(y), \quad \forall x, y \in [0, 1] .$$

It is obvious that distributions F and G are two marginals of the two-dimensional distribution H . Based on the fact that distribution G is the distribution over posterior mean from prior F , we have that $\mathbb{E}_{x \sim H_{x|y}}[x] = y$ for each $y \in [0, 1]$. Thus, the two-dimensional distribution H indeed forms a Martingale Coupling of distributions F and G .

Second, we prove the proof of sufficiency (\Leftarrow). We can construct such an information structure: let $S \triangleq [0, 1]$ and $\pi(s = y|x) = H(y|x) = \frac{H(x,y)}{F(x)}$ for any $x \in [0, 1]$ and $y \in [0, 1]$. Since the two-dimensional distribution H is a Martingale Coupling of distributions F and G , it is easy to check that the distribution of posterior means – induced from the prior F and the constructed information structure after updating using Bayes Rule is exactly the distribution G . \square

References

David A Blackwell and Meyer A Girshick. *Theory of games and statistical decisions*. Courier Corporation, 1979.

Matthew Gentzkow and Emir Kamenica. A rothschild-stiglitz approach to bayesian persuasion. *American Economic Review*, 106(5):597–601, 2016.

Michael Rothschild and Joseph Stiglitz. Increasing risk: I. a definition. *Journal of Economic Theory*, 2(3):225–243, 1970.